张毅

作者:时间:2019-03-29点击数:

张毅生活照副本.jpg

最高学历、学位

研究生、博士

职 称

教授(二级)

职 务


电子邮箱

zhy@mail.usts.edu.cn


一、基本情况

张毅,男,1964年生,博士,教授,博士生导师。1983年毕业于东南大学力学专业,获理学学士学位;1988年毕业于东南大学一般力学专业,获工学硕士学位;1998年毕业于北京理工大学应用数学专业,获理学博士学位。2000年晋升教授,2010年晋升二级教授。2005年担任苏州科技大学硕士生导师,2011年兼任南京理工大学博士生导师。《苏州科技大学学报(自然科学版)》编委会主任。曾担任苏州科技大学副校长(2006-2017)。兼任中国交叉科学学会副理事长,第九届中国力学学会动力学与控制专业委员会委员、分析力学专业组副组长,江苏省力学学会副理事长,苏州市力学学会理事长等。曾担任教育部首届高等学校力学教学指导委员会非力学类专业力学基础课程教学指导分委员会委员。曾被授予江苏省劳动模范、江苏省师德模范、苏州市劳动模范、苏州市十大杰出青年等荣誉称号。

二、主要研究领域及学术成就

长期从事动力学与控制、应用数学等领域的教学和科研工作。近期主要研究领域和兴趣有:分数阶变分问题与对称性;时间尺度上变分问题与对称性;分析动力学;Birkhoff系统动力学;非完整系统动力学等。主持完成国家自然科学基金项目2项(批准号:10972151和11272227);目前主持国家自然科学基金项目《时间尺度上约束力学系统变分问题及其对称性研究》(在研;批准号:11572212)。在Nonlinear Dyn.,Int. J. Non-Linear Mech.,J. Vib. Control,Acta Mech.,J. Math. Phys.,Commun. Nonlinear Sci. Numer. Simulat.,Int. J. Theor. Phys.,Fract. Calc. Appl. Anal.,Complexity,Acta Phys. Pol. A,Chinese J. Phys.,Acta Mech. Sin.,Chin. Phys. B,Chin. Phys. Lett.,Commun. Theor. Phys.,《中国科学》,《科学通报》,《力学学报》,《物理学报》,《兵工学报》等重要学术期刊以第一作者或通讯作者发表学术论文270余篇,其中120余篇论文被SCI检索,80余篇论文被EI检索。已指导博士生4人,其中2人已获博士学位,获校优秀博士学位论文1篇,2人获国家奖学金;已指导硕士生25人,其中17人已获硕士学位,获江苏省优秀硕士学位论文3篇,校优秀硕士学位论文7篇,5人获国家奖学金。被遴选为江苏省“333高层次人才培养工程”首批中青年科学技术带头人、江苏省普通高校新世纪学术带头人培养人选等。

三、代表性科研成果

[1] Yi Zhang*. Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type.International Journal of Non-Linear Mechanics, 2018, 101: 36-43.

[2] Yi Zhang*, Xue-Ping Wang. Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians.International Journal of Non-Linear Mechanics, 2018, 105: 165-172.

[3] Yi Zhang*, Xue Tian. Conservation laws for Birkhoffian systems of Herglotz type.Chinese Physics B, 2018, 27(9): 090502.

[4] Chuan-Jing Song,Yi Zhang*. Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications.Fractional Calculus & Applied Analysis, 2018, 21(2): 509-526.

[5] Xue Tian,Yi Zhang*. Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales.Acta Mechanica, 2018, 229(9): 3601-3611.

[6] Yi Zhang*. Variational problem of Herglotz type for Birkhoffian system and its Noether's theorem.Acta Mechanica, 2017, 228(4): 1481-1492.

[7] 张毅*. Caputo导数下分数阶Birkhoff系统的准对称性与分数阶Noether定理.力学学报, 2017, 49(1): 693-702.

[8] Yi Zhang*, Xiao-San Zhou. Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians.Nonlinear Dynamics, 2016, 84(4): 1867-1876.

[9] 张毅*.相空间中非保守系统Herglotz广义变分原理及其Noether定理.力学学报, 2016, 48(6): 1382-1389.

[10] Xiang-Hua Zhai,Yi Zhang*. Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay.Communications in Nonlinear Science and Numerical Simulation, 2016, 36: 81-97.

[11] Yi Zhang*, Xiang-Hua Zhai. Noether symmetries and conserved quantities for fractional Birkhoffian systems.Nonlinear Dynamics, 2015, 81(1-2): 469-480.

[12] Yi Zhang*. Perturbation to Noether symmetries and adiabatic invariants for Birkhoffian systems.Mathematical Problems in Engineering, 2015, Artical ID 790139.

[13] Chuan-Jing Song,Yi Zhang*. Noether theorem for Birkhoffian systems on time scales.Journal of Mathematical Physics, 2015, 56(10): 102701.

[14] Zi-Xuan Long,Yi Zhang*. Fractional Noether theorem based on extended exponentially fractional integral.International Journal of Theoretical Physics, 2014, 53(3): 841-855.

[15] Yan Zhou,Yi Zhang*. Noether’s theorem of a fractional Birkhoffian system within Riemann-Liouville derivatives.Chinese Physics B, 2014, 23(12): 124502.

[16] Xiang-Hua Zhai,Yi Zhang*. Noether symmetries and conserved quantities for Birkhoffian systems with time delay.Nonlinear Dynamics, 2014, 77(1-2): 73-86.

[17] Yi Zhang*, Yan Zhou. Symmetries and conserved quantities for fractional action-like Pfaffian variational problems.Nonlinear Dynamics, 2013, 73(1-2): 783-793.

[18] 张毅*.非保守动力学系统Noether对称性的摄动与绝热不变量.物理学报, 2013, 62(16): 164501.

[19] 张毅*,金世欣.含时滞的非保守系统动力学的Noether理论.物理学报, 2013, 62(23): 234502.

[20] Yi Zhang*. Fractional differential equations of motion in terms of combined Riemann- Liouville derivatives.Chinese Physics B, 2012, 21(8): 084502.

[21] 张毅*.相空间中非完整非保守力学系统的一个动力学逆问题.兵工学报, 2012, 33(5): 600-604.

[22] Yi Zhang*. The method of variation of parameters for solving a dynamical system of relative motion.Chinese Physics Letters, 2011, 28(10): 104501.

[23] Yi Zhang*. The method of variation of parameters for integration of a generalized Birkhoffian system.Acta Mechanica Sinica, 2011, 27(6): 1059–1064

[24] Yi Zhang*. Perturbation of symmetries and adiabatic invariants for a system of generalized classical mechanics.Chinese Journal of Physics, 2011, 49 (5): 1005-1017.

[25] 张毅*.非完整力学系统的Hamilton对称性.中国科学:物理学力学天文学, 2010, 40(9): 1130-1137.

[26] Yi Zhang*. Stability of Motion for Generalized Birkhoffian Systems.Journal of China Ordnance, 2010, 6(3): 161-165.

[27] 张毅*.恰普雷金系统相对运动的稳定性.兵工学报, 2010, 31(1): 58-62.

[28] Yi Zhang*. Stability of manifold of equilibrium states for nonholonomic systems in relative motion.Chinese Physics Letters, 2009, 26 (12): 120305

[29] 张毅*.广义Birkhoff系统的Birkhoff对称性与守恒量.物理学报, 2009, 58(11): 7436-7439.

[30] Yi Zhang*. Conformal invariance and Noether symmetry, Lie symmetry of holonomic mechanical systems in event space.Chinese Physics B, 2009, 18(11): 4636-4642.

[31] 张毅*. Birkhoff系统约化的Routh方法.物理学报, 2008, 57(9): 5374-5377.

[32] Yi Zhang*. Hojman conserved quantities for Birkhoffian systems in the event space.Communications in Theoretical Physics, 2008, 50(1): 59-62.

[33] 张毅*.事件空间中Birkhoff系统的参数方程及其第一积分.物理学报, 2008, 57(5): 2649-2653.

[34] 张毅*.事件空间中力学系统的微分变分原理.物理学报, 2007,56(2):655-660.

[35] Yi Zhang*,Cun-Xin Fan. Perturbation of symmetries and Hojman adiabatic invariants for mechanical systems with unilateral holonomic constraints.Communications in Theoretical Physics, 2007,47(4): 607-610.

[36] 张毅*. Birkhoff系统的一类新型绝热不变量.物理学报, 2006,55(8):3833-3837.

[37] Yi Zhang*, Feng-Xiang Mei. A geometric framework for time-dependent mechanical systems with unilateral constraints.Chinese Physics, 2006, 15(1): 13-18

[38] 张毅*. Birkhoff系统的Hojman定理的几何基础.物理学报, 2004,53(12):4026-4028.

[39] Yi Zhang*. A new conservation law derived from Mei symmetry for the system of generalized classical mechanics.Communications in Theoretical Physics, 2004,42(6):899-902.

[40] Yi Zhang*. Conservation laws for mechanical systems with unilateral holonomic constraints.Progress in Natural Science, 2004, 14(1): 55-59.

[41] 张毅*,葛伟宽.用积分因子方法研究非完整约束系统的守恒律.物理学报, 2003,52(10): 2363-2367.

[42] 张毅*. Birkhoff系统的一类Lie对称性守恒量.物理学报,2002, 51(3):461-464.

[43] Yi Zhang*, Feng-Xiang Mei. A differential geometric description for time-independent Chetaev’s non-holonomic mechanical system with unilateral constraints.Acta Mechanica Solida Sinica,2002, 15(1):62-67.

[44] Yi Zhang*. Construction of the solution of variational equations for constrained Birkhoffian systems.Chinese Physics,2002, 11(5):437-440.

[45] 张毅*. Birkhoff系统的一类积分不变量的构造.力学学报, 2001, 33(5): 669-674.

[46] Yi Zhang*, Mei Shang, Feng-Xiang Mei. Symmetries and conserved quantities for systems of generalized classical mechanics.Chinese Physics, 2000, 9(6): 401-407.

[47] Yi Zhang*, Feng-Xiang Mei. Lie symmetries of mechanical systems with unilateral holonomic constraints.Chinese Science Bulletin, 2000, 45(15): 1354-1358.

[48] Yi Zhang*, Feng-Xiang Mei. Noether’s theory of mechanical systems with unilateral constraints.Applied Mathematics and Mechanics, 2000, 21(1): 59-66.

[49] Yi Zhang*, Feng-Xiang Mei. Equations of motion for nonholonomic mechanical systems with unilateral constraints.Applied Mathematics and Mechanics, 1999, 20(1): 59-67.

[50] Yi Zhang*, Feng-Xiang Mei. Conservation laws and symmetries of systems with unilateral constraints in phase space.Acta Mechanica Solida Sinica,1999, 12(1): 22-30.


上一条:李霞

2020 版权所有 :英国·威廉希尔(williamhill)唯一中文官方网站

手机版