王开永

作者:时间:2019-03-29点击数:


最高学历、学位:研究生、理学博士

职 称: 教授

职 务: 威廉希尔官网党委书记

电子邮箱:

beewky@vip.163.com;kywang@usts.edu.cn



一、基本情况:

    2011年苏州大学威廉希尔官网毕业,理学博士学位2005年8月至今在苏州科技大学任教。在东南大学数学系完成博士后研究工作。获苏州市优秀教育工作者称号,校优秀教育工作者称号,校优秀教师称号。现为江苏省学位与研究生教育学会指导教师专业委员会委员,江苏省概率统计学会第八届常务理事,苏州市现场统计研究会第六届理监事会副理事长。入选江苏省第五期“333高层次人才培养工程”第三层次。

二、主要研究领域及学术成就:

    用概率统计中的极限理论等工具处理金融和保险中的风险度量问题目前主要研究方向:处理带有金融风险和保险风险的相依风险模型的破产概率的估计;重点处理大额索赔(重尾分布)情形下若干风险模型的破产概率的估计;衡量风险模型中的相依性对破产概率的影响;讨论概率论中随机游动的相关问题。近五年发表论文20余篇,其中SCI收录论文10余篇。主持并完成2项国家自然科学基金项目,1项江苏省自然科学基金项目,1项中国博士后基金项目,1项江苏省博士后基金项目。获得江苏省统计科研优秀成果奖三等奖1项,苏州市自然科学优秀学术论文三等奖3项。

三、代表性科研成果:

[1]. Chenghao Xu, Kaiyong WangXinyi Wu. The finite-time ruin probability of a risk model with stochastic return and subexponential claim sizes. Communications in StatisticsTheory and Methods, 2024, 53(6): 21942204.

[2]. Kaiyong Wang, Yang Yang, Kam C. Yuen. The uniform asymptotics for the tail of Poisson shot noise process with dependent and heavy-tailed shocks, Journal of Mathematical Research with Applications, 2023, 43(3): 335-349.

[3]. Baoyin Xun, Kam C. Yuen, Kaiyong Wang. The finite-time ruin probability of a risk model with a general counting process and stochastic return, Journal of Industrial and Management Optimization, 2022, 18(3): 1541-1556.

[4]. Kaiyong Wang, Yanzhu Mao. Asymptotics of the finite-time ruin probability of dependent risk model perturbed by diffusion with a constant interest rate, Communications in Statistics—Theory and Methods, 2021, 50(4): 932–943.

[5]. Baoyin Xun, Kaiyong Wang, Kam C. Yuen. The finite-time ruin probability of time-dependent risk model with stochastic return and Brownian perturbation, Japan Journal of Industrial and Applied Mathematics, 2020, 37(2): 507-525.

[6]. Yang Yang, Tao Jiang, Kaiyong Wang, Kam C. Yuen. Interplay of financial and insurance risks in dependent discrete-time risk models, Statistics and Probability Letters, 2020, 162, Article ID 108752.

[7]. Yang Yang, Kaiyong Wang, Jiajun Liu, Zhimin Zhang. Asymptotics for a bidimensional risk model with two geometric Levy price processes, Journal of Industrial and Management Optimization, 2019, 15(2): 481-505.

[8]. Kaiyong Wang, Lamei Chen, Yang Yang, Miaomiao Gao. The finite-time ruin probability of a risk model with stochastic return and Brownian perturbation, Japan Journal of Industrial and Applied Mathematics, 2018, 35(3): 1173-1189.

[9]. Kaiyong Wang, Miaomiao Gao, Yang Yang, Yang Chen. Asymptotics for the finite-time ruin probability in a discrete-time risk model with dependent insurance and financial risks, Lithuanian Mathematical Journal, 2018, 58(1): 113-125.

[10]. Yanzhu Mao, Kaiyong Wang, Ling Zhu, Yue Ren. Asymptotics for the finite-time ruin probability of a risk model with a general counting process, Japan Journal of Industrial and Applied Mathematics, 2017, 34(1): 243-252.

[11]. Zhongquan Tan, Kaiyong Wang. On Piterbarg’s max-discretisation theorem for homogeneous Gaussian random fields, Journal of Mathematical Analysis and Applications, 2015, 429(2): 969-994.

        [12].Yang, Yang, Kaiyong Wang, Dimitrios G. Konstantinides, Uniform asymptotics for discounted aggregate claims in dependent risk models, Journal of Applied Probability, 2014, 51(3): 669 - 684.


上一条:董迎辉

2020 版权所有 :英国·威廉希尔(williamhill)唯一中文官方网站

手机版